

Czech Republic eota@tzus.cz

European Technical Assessment

ETA 20/0871 of 19/11/2020

Technical Assessment Body issuing the ETA: Technical and Test Institute

for Construction Prague

Trade name of the construction product **MKE**

Product family to which the construction

product belongs

Product area code: 33

Bonded injection type anchor for use in cracked and uncracked concrete

Manufacturer Marcopol Sp. z o.o. Producent Śrub

ul. Oliwska 100, 80-209 Chwaszczyno,

Poland

Plant 1 Manufacturing plant

This European Technical Assessment contains

20 pages including 17 Annexes which form

an integral part of this assessment.

This European Technical Assessment is issued in accordance with regulation (EU) No 305/2011, on the basis of

EAD 330499-01-0601 Bonded fasteners for use in concrete

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full (excepted the confidential Annex(es) referred to above). However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body - Technical and Test Institute for Construction Prague. Any partial reproduction has to be identified as such.

1. Technical description of the product

The MKE with steel elements is bonded anchor (injection type).

Steel elements can be galvanized or stainless steel threaded rods or rebars.

Steel element is placed into a drilled hole filled with injection mortar. The steel element is anchored via the bond between metal part, injection mortar and concrete. The anchor is intended to be used with various embedment depth up to 20 diameters.

The illustration and the description of the product are given in Annex A.

2. Specification of the intended use in accordance with the applicable EAD

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The provisions made in this European Technical Assessment are based on an assumed working life of the anchor of 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the products in relation to the expected economically reasonable working life of the works.

3. Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Static and quasi-static loading	
Resistance to steel failure (tension)	See Annex C 1, C 2
Resistance to combined pull-out and concrete failure	See Annex C 1, C 2
Resistance to concrete cone failure	See Annex C 1, C 2
Edge distance to prevent splitting under load	See Annex C 1, C 2
Robustness	See Annex C 1, C 2
Maximum setting torque moment	See Annex B 5
Minimum edge distance and spacing	See Annex B 5
Resistance to steel failure (shear)	See Annex C 3, C 4
Resistance to pry-out failure	See Annex C 3, C 4
Resistance to concrete edge failure	See Annex C 3, C 4
Displacements under short term and long term loading	See Annex C 5
Durability of metal parts	See Annex A 3
Seismic performance C1 and C2	
Resistance to steel failure	See Annex C 6, C 7, C 8
Resistance to pull-out	See Annex C 6, C 7, C 8
Factor for annular gap	See Annex C 6, C 7, C 8
Displacement	See Annex C 8

3.2 Hygiene, health and environment (BWR 3)

No performance determined.

3.3 General aspects relating to fitness for use

Durability and serviceability are only ensured if the specifications of intended use according to Annex B 1 are kept.

4. Assessment and verification of constancy of performance (AVCP) system applied with reference to its legal base

According to the Decision 96/582/EC of the European Commission¹ the system of assessment verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) given in the following table apply.

-

Official Journal of the European Communities L 254 of 08.10.1996

Product	Intended use	Level or class	System
Metal anchors for	For fixing and/or supporting to concrete,		
use in concrete	structural elements (which contributes to	-	1 1
	the stability of the works) or heavy units		

5. Technical details necessary for the implementation of the AVCP system, as provided in the applicable EAD

5.1 Tasks of the manufacturer

The manufacturer may only use raw materials stated in the technical documentation of this European Technical Assessment.

The factory production control shall be in accordance with the control plan which is a part of the technical documentation of this European Technical Assessment. The control plan is laid down in the context of the factory production control system operated by the manufacturer and deposited at Technický a zkušební ústav stavební Praha, s.p.² The results of factory production control shall be recorded and evaluated in accordance with the provisions of the control plan.

5.2 Tasks of the notified bodies

The notified body shall retain the essential points of its actions referred to above and state the results obtained and conclusions drawn in a written report.

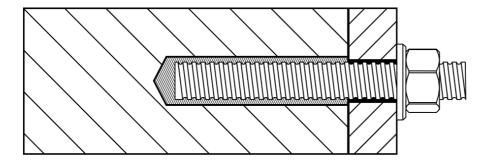
The notified certification body involved by the manufacturer shall issue a certificate of constancy of performance of the product stating the conformity with the provisions of this European Technical Assessment.

In cases where the provisions of the European Technical Assessment and its control plan are no longer fulfilled the notified body shall withdraw the certificate of constancy of performance and inform Technický a zkušební ústav stavební Praha, s.p without delay.

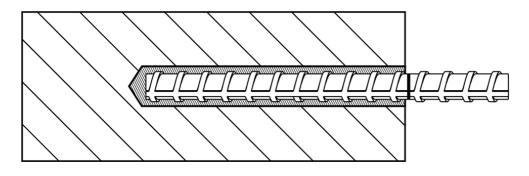
Issued in Prague on 19.11.2020

Ing. Mária Schaan

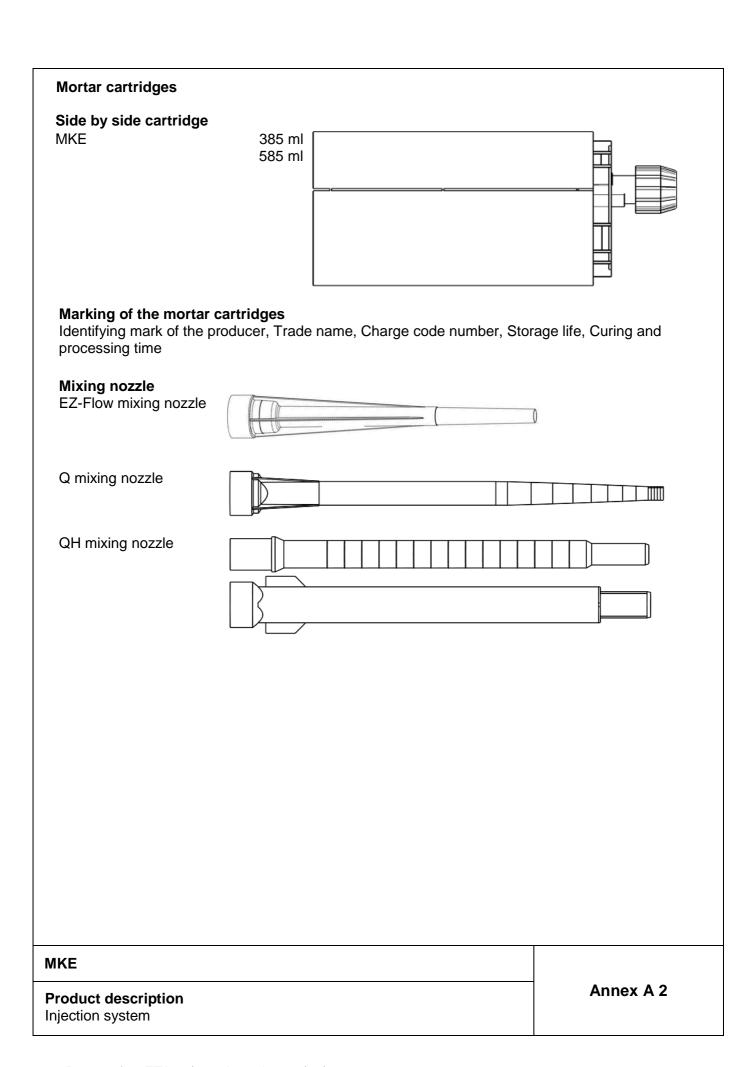
Head of the Technical Assessment Body

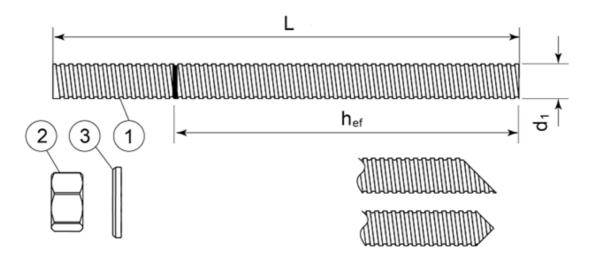

TECHNI ÚSTAV STALLER POR PORTO DE CONSTITUTO DE CONSTITUTO

Page 3 of 20 ETA 20/0871 issued on 19/11/2020


-

The control plan is a confidential part of the documentation of the European Technical Assessment, but not published together with the ETA and only handed over to the approved body involved in the procedure of AVCP.


Threaded rod KGFIX


Reinforcing bar

MKE	
Product description Installed conditions	Annex A 1

Threaded rod KGFIX M8, M10, M12, M16, M20, M24, M27, M30

Standard commercial threaded rod with marked embedment depth

Part	Designation	Material							
	· · · · · · · · · · · · · · · · · · ·								
	Steel, zinc plated ≥ 5 µm acc. to EN ISO 4042 or								
	eel, Hot-dip galvanized ≥ 40 µm acc. to EN ISO 1461 and EN ISO 10684 or								
Steel,	, zinc diffusion coating ≥ 15 μm acc. to EN 13811								
1	Anchor rod	Steel, EN 10087 or EN 10263 Property class 4.6, 5.8, 8.8, 10.9* EN ISO 898-1							
2	Hexagon nut EN ISO 4032	According to threaded rod, EN 20898-2							
3	Washer EN ISO 887, EN ISO 7089, EN ISO 7093 or EN ISO 7094	According to threaded rod							
Stainl	tainless steel								
1	Anchor rod	Material: A2-70, A4-70, A4-80, EN ISO 3506							
2	Hexagon nut EN ISO 4032	According to threaded rod							
3	Washer EN ISO 887, EN ISO 7089, EN ISO 7093 or EN ISO 7094	According to threaded rod							
High	corrosion resistant steel								
1	Anchor rod	Material: 1.4529, 1.4565, EN 10088-1							
2	Hexagon nut EN ISO 4032	According to threaded rod							
3	Washer EN ISO 887, EN ISO 7089, EN ISO 7093 or EN ISO 7094	According to threaded rod							

^{*}Galvanized rod of high strength are sensitive to hydrogen induced brittle failure

MKE	
Product description Threaded rod and materials	Annex A 3

Rebar Ø8, Ø10, Ø12, Ø16, Ø20, Ø25, Ø32

Standard commercial reinforcing bar with marked embedment depth

Product form	Bars and de	-coiled rods			
Class	Class				
Characteristic yield strength fyk or fo	_{0,2k} (MPa)	400 to	o 600		
Minimum value of $k = (f_t/f_y)_k$	≥ 1,08	≥ 1,15 < 1,35			
Characteristic strain at maximum for	≥ 5,0	≥ 7,5			
Bendability		Bend/Rebend test			
Maximum deviation from nominal	Maximum deviation from nominal Nominal bar size (mm)				
mass (individual bar) (%)	` ,				
	±4	1 ,5			
Bond: Minimum relative rib area,	Nominal bar size (mm)				
$f_{R,min}$	0,0)40			
	> 12	0,0)56		

MKE	
Product description Rebars and materials	Annex A 4

Specifications of intended use

Anchorages subject to:

- Static and quasi-static load
- Seismic actions category C1 (max w = 0,5 mm):
 - threaded rod size M8, M10, M12, M16, M20, M24, M27, M30
 - rebar size Ø10, Ø12, Ø16, Ø20, Ø25, Ø32
- Seismic actions category C2 (max w = 0,8 mm): threaded rod size M12, M16, M20

Base materials

- Cracked and uncracked concrete
- Reinforced or unreinforced normal weight concrete of strength class C20/25 at minimum and C50/60 at maximum according EN 206:2013.

Temperature range:

• T3: -40°C to +70°C (max. short. term temperature +70°C and max. long term temperature +50°C)

Use conditions (Environmental conditions)

- (X1) Structures subject to dry internal conditions (zinc coated steel, stainless steel, high corrosion resistance steel).
- (X2) Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel A4, high corrosion resistant steel).
- (X3) Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist (high corrosion resistant steel).

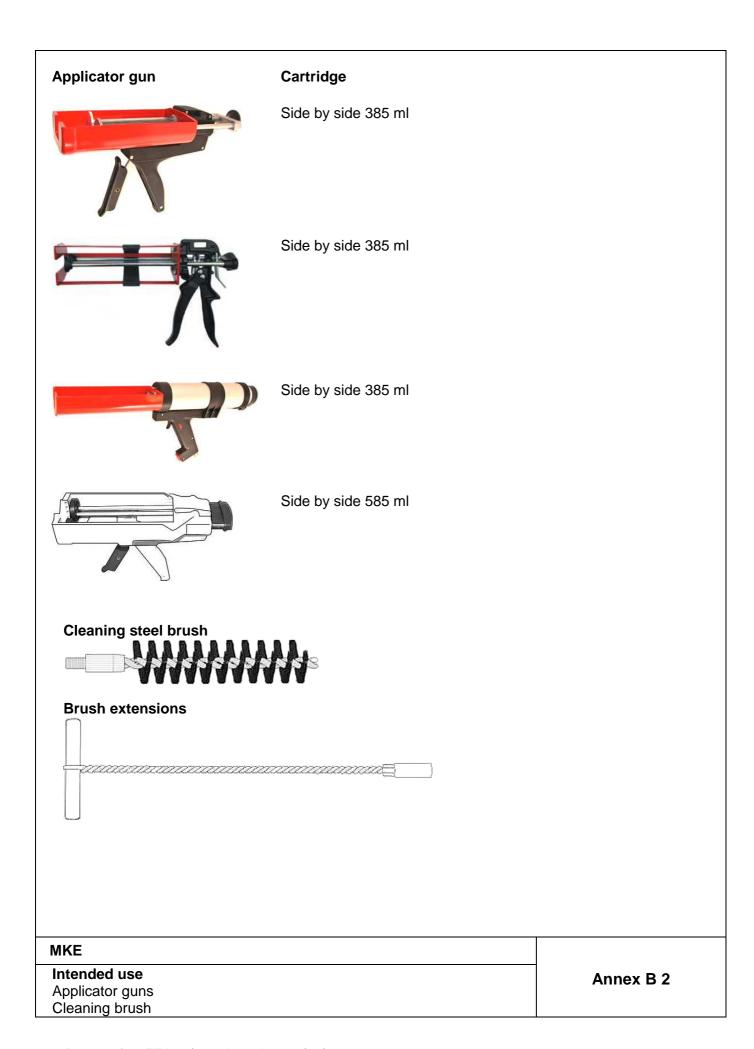
Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Concrete conditions:

- I1 installation in dry or wet (water saturated) concrete and use in service in dry or wet concrete.
- 12 installation in water-filled (not sea water) and use in service in dry or wet concrete

Design:

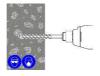
- The anchorages are designed in accordance with the EN 1992-4 under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings.
- Anchorages under seismic actions (cracked concrete) have to be designed in accordance with EN 1992-4.

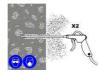

Installation:

- Hole drilling by hammer drill mode.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

Installation direction:

• D3 – downward and horizontal and upwards (e.g. overhead) installation


MKE	
Intended use Specifications	Annex B 1

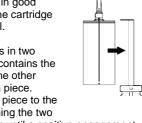

Installation instructions

Before commencing installation ensure the operative is equipped with appropriate personal protection equipment, SDS Hammer Drill, Air, Hole Cleaning Brush, good quality Dispensing Tool - either manual or power operated, Chemical cartridge with mixing nozzle and extension tube, if needed.

1. Using the SDS Hammer Drill in rotary hammer mode for drilling, with a carbide tipped drill bit of the appropriate size, drill the hole to the specified hole diameter and depth.

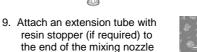
Insert the Air Lance to the bottom of the hole and depress the trigger for 2 seconds. The compressed air must be clean - free from water and oil - and at a minimum pressure of 6bar.

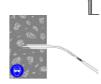
Perform the blowing operation twice.


Select the correct size Hole Cleaning Brush. Ensure that the brush is in good condition and the correct diameter. Insert the brush to the bottom of the hole, using a brush

extension if needed to reach the bottom of the hole and withdraw with a twisting motion. There should be positive interaction between the steel bristles of the brush and the sides of the drilled hole.

Perform the brushing operation twice.


- 4. Repeat 2
- 5. Repeat 3
- Repeat 2
- 7. Select the appropriate static mixer nozzle, checking that the mixing elements are present and correct (do not modify the mixer). Attach mixer nozzle to the cartridge. Check the Dispensing Tool is in good working order. Place the cartridge into the dispensing tool.


Note: The QH nozzle is in two sections. One section contains the mixing elements and the other section is an extension piece. Connect the extension piece to the mixing section by pushing the two sections firmly together until a positive engagement is felt.

8. Extrude some resin to waste until an even-colored mixture is extruded, The cartridge is now ready for use

MICEE CEPTER

with a push fit

(The extension tubes may be pushed into the resin stoppers and are held in place with a coarse internal thread).

10. Insert the mixing nozzle to the bottom of the hole. Extrude the resin and slowly withdraw the nozzle from the hole. Ensure no air voids are created as the nozzle is withdrawn. Inject resin until the hole is approximately 3/4 full and remove the nozzle from the hole.

- 11. Select the steel anchor element ensuring it is free from oil or other contaminants, and mark with the required embedment depth. Insert the steel element into the hole

using a back and forth twisting motion to ensure complete cover, until it reaches the bottom of the hole. Excess resin will be expelled from the hole evenly around the steel element and there shall be no gaps between the anchor element and the wall of the drilled hole.

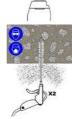
- 12. Clean any excess resin from around the mouth of the hole.
- 13. Do not disturb the anchor until at least the minimum cure time has elapsed. Refer to the Working and Load Timetable to determine the appropriate cure time.

14. Position the fixture and tighten the anchor to the appropriate installation torque.

Do not over-torque the anchor as this could adversely affect its performance.

MKE

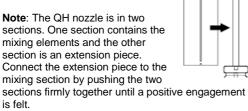
Intended use Installation procedure Annex B 3


Installation instructions

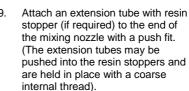
Overhead Substrate Installation Method

 Using the SDS Hammer Drill in rotary hammer mode for drilling, with a carbide tipped drill bit of the appropriate size, drill the hole to the specified hole diameter and depth.

 Select the correct Air Lance, insert to the bottom of the hole and depress the trigger for 2 seconds. The compressed air must be clean – free from water and oil – and at a minimum pressure of 90psi (6bar).



Perform the blowing operation twice.


B. Select the correct size Hole Cleaning Brush. Ensure that the brush is in good condition and the correct diameter. Insert the brush to the bottom of the hole, using a brush extension if needed to reach the bottom of the hole, and withdraw with a twisting motion. There should be positive interaction between the steel bristles of the brush and the sides of the drilled hole.

Perform the brushing operation twice.

- Repeat 2
- 5. Repeat 3
- 6. Repeat 2
- 7. Select the appropriate static mixer nozzle checking that the mixing elements are present and correct (do not modify the mixer). Attach mixer nozzle to the cartridge. Check the Dispensing Tool is in good working order. Place the cartridge into the dispensing tool.

 Extrude some resin to waste until an even-colored mixture is extruded, The cartridge is now ready for use.

10. Insert the mixing nozzle to the bottom of the hole. Extrude the resin and slowly withdraw the nozzle from the hole. Ensure no air voids are created as the nozzle is withdrawn. Inject resin until the hole is approximately ¾ full and remove the nozzle from the hole.

11. Select the steel anchor element ensuring it is free from oil or other contaminants, and mark with the required embedment depth. Insert the steel element into the hole using a back and forth twisting motion to ensure complete cover, until it reaches the bottom of the hole.

Excess resin will be expelled from the hole evenly around the steel element and there shall be no gaps between the anchor element and the wall of the drilled hole.

Clean any excess resin from around the mouth of the hole.

 Do not disturb the anchor until at least the minimum cure time has elapsed. Refer to the Working and Load Timetable to determine the appropriate cure time.

 Position the fixture and tighten the anchor to the appropriate installation torque.

> Do not over-torque the anchor as this could adversely affect its performance.

MKE

Intended use Installation procedure Annex B 4

Table B1: Installation parameters of threaded rod

Size			M8	M10	M12	M16	M20	M24	M27	M30
Nominal drill hole diameter	$ \emptyset d_0 $	[mm]	10	12	14	18	22	26	30	35
Cleaning brush			S11HF	S14HF	S14/15HF	S22HF	S24HF	S31HF	S31HF	S38HF
Torque moment	max T _{fixt}	[Nm]	10	20	40	80	120	160	180	200
Embedment depth for hef,min	h _{ef}	[mm]	60	60	70	80	90	96	108	120
Embedment depth for hef,max	h _{ef}	[mm]	160	200	240	320	400	480	540	600
Depth of drill hole	h_0	[mm]	h _{ef} +5	h _{ef} +5	h _{ef} +5	h _{ef} +5	h _{ef} +5	h _{ef} +5	h _{ef} +5	h _{ef} +5
Minimum edge distance	Cmin	[mm]	40	40	40	40	50	50	50	60
Minimum spacing	Smin	[mm]	40	40	40	40	50	50	50	60
Minimum thickness of member	h_{\min}	[mm]	h _{ef} + 30 mm ≥ 100 mm h _{ef} + 2d ₀							

Table B2: Installation parameters of rebar

Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Nominal drill hole diameter	Ød ₀	[mm]	12	14	16	20	25	32	40
Cleaning brush			S12/13HF	S14/15HF	S18HF	S22HF	S27HF	S35HF	S43HF
Torque moment	max T _{fixt}	[Nm]	10	20	40	80	120	180	200
Embedment depth for hef,min	h _{ef}	[mm]	60	60	70	80	90	100	128
Embedment depth for hef,max	h _{ef}	[mm]	160	200	240	320	400	500	640
Depth of drill hole	h_0	[mm]	h _{ef} +5	h _{ef} +5	h _{ef} +5	h _{ef} +5	h _{ef} +5	h _{ef} +5	h _{ef} +5
Minimum edge distance	Cmin	[mm]	40	40	40	40	50	50	70
Minimum spacing	Smin	[mm]	40	40	40	40	50	50	70
Minimum thickness of member	h _{min}	[mm]	h _{ef} + 3	$h_{ef} + 30 \text{ mm} \ge 100 \text{ mm}$ $h_{ef} + 2d_0$					

Table B3: Minimum curing time

Table D3. William caring th	110						
Base Material Temperature	Cartridge	T Work	T Load				
[°C]	Temperature [°C]	[mins]	[hrs]				
+5		300	24				
+5°C to +10	Minimum +10	150	24				
+10°C to +15	+10°C to +15	40	18				
+15°C to +20	+15°C to +20	25	12				
+20°C to +25	+20°C to +25	18	8				
+25°C to +30	+25°C to +30	12	6				
+30°C to +35	+30°C to +35	8	4				
+35°C to +40	+35°C to +40	6	2				
Ensure cartridge is ≥ 10°C							

T Work is typical gel time at highest base material temperature in the range.

MKE	
Intended use Installation parameters Curing time	Annex B 5

T Load is minimum set time required until load can be applied at the lowest temperature in the range.

Table C1: Design method EN 1992-4 Characteristic values of resistance to tension load of threaded rod

Steel failure – Characteristic resis	tance												
Size				M8	M1	0	M12	M	16	M20	M24	M27	M30
Steel grade 4.6	N _{Rk.s}		[kN]	15	23	3	34	6	3	98	141	184	224
Partial safety factor	γMs		[-]						2,00)			
Steel grade 5.8	N _{Rk,s}		[kN]	18	29	9	42	7	9	123	177	230	281
Partial safety factor	γMs		[-]						1,50				
Steel grade 8.8	N _{Rk,s}		[kN]	29	46	3	67	12	26	196	282	367	449
Partial safety factor	γMs		[-]						1,50)			
Steel grade 10.9	$N_{Rk,s}$		[kN]	37	58	3	84	1:	57	245	353	459	561
Partial safety factor	γMs		[-]						1,33	}			
Stainless steel grade A2-70, A4-70	N _{Rk,s}		[kN]	26	4	1	59	1	10	172	247	321	393
Partial safety factor	γMs		[-]						1,87	•			
Stainless steel grade A4-80	$N_{Rk,s}$		[kN]	29	46	3	67	12	26	196	282	367	449
Partial safety factor	γMs		[-]			•			1,60)			
Stainless steel grade 1.4529	$N_{Rk,s}$		[kN]	26	4	1	59	1	10	172	247	321	393
Partial safety factor	γMs		[-]						1,50)			
Stainless steel grade 1.4565	N _{Rk,s}		[kN]	26	4	1	59	1	10	172	247	321	393
Partial safety factor	γMs		[-]			•			1,87	,			
Combined pullout and concrete co	one failure	in d	concre	ete C2	20/25								
Size					M8	M1	0 1	W12	M16	M20	M24	M27	M30
Characteristic bond resistance in	uncracked	СО	ncrete)		•	•		•	•	•		•
Temperature T3: -40°C to +70°C	τRI	(,ucr	[N/m	nm²l	14	13	3	13	12	12	11	10	9
Dry, wet concrete, flooded hole		,			1								
Partial safety factor	1	/inst	[-]					1	,0			
	C25/30								1	,02			
	C30/37								1	,04			
Factor for uncracked concrete	C35/45	μc	[-	.1						,06			
actor for unordenced concrete	C40/30	PC	L	1						,07			
	C45/55									,08			
	C50/60								1	,09			
Characteristic bond resistance in	cracked co	nc				,				,			,
Temperature T3: -40°C to +70°C	τρ	≀k,cr	[N/m	nm²]	8	8		7,5	7,5	7	7	5	5
Dry, wet concrete, flooded hole				_									
Partial safety factor		/inst	[-]						,0			
	C25/30									,02			
	C30/37									,04			
Factor for cracked concrete	C35/45	μ _c	[-]						,06			
	C40/50 C45/55			_						,07			
	C45/55 C50/60									,08 ,09			
Concrete cone failure	030/00									,ບອ			
Factor for concrete cone failure		T		Т									
for uncracked concrete	k _{ucr} ,	N							1	1			
Factor for concrete cone failure		-	[-]										
for cracked concrete	k _{cr} ,	N							7	,7			
Edge distance	C _{Cr} ,	N	[mm	11					1 !	5h _{ef}			
Splitting failure	- JCI,		Į,,,,,	.1					.,,	101			
Size					M8	M1	0 1	VI12	M16	M20	M24	M27	M30
Edge distance	^		[mn	nl	0		<u>ا ب</u>	2		h _{ef}	11127	.4121	
Spacing	C _{Cr} ,		[mn	-						Ccr,sp			
Opacing	S _{cr}	sp	[IIIII	11]					۷,	oci,sp			

MKE	
Performances Design according to EN 1992-4	Annex C 1
Characteristic resistance for tension loads - threaded rod	

Table C2: Design method EN 1992-4 Characteristic values of resistance to tension load of rebar

Steel failure - Characteristic resistan	nce								
Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Rebar BSt 500 S	$N_{Rk,s}$	[kN]	28	43	62	111	173	270	442
Partial safety factor	γMs	[-]				1,4			

Pullout failure in concrete C20/25	5								
Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Characteristic bond resistance in	uncracked co	ncrete							
Temperature T3: -40°C to +70°C	τ _{Rk,ucr}	[N/mm ²]	12	12	12	11	11	11	7
Dry and wet concrete									
Installation safety factor	γinst	[-]				1,0			
Flooded hole									
Installation safety factor	γinst	[-]				1,2			
Factor for uncracked concrete	C25/30 C30/37 C35/45 C40/50 C45/55 C50/60	[-]				1,02 1,04 1,06 1,07 1,08 1,09			
Characteristic bond resistance ir	n cracked conc	rete							
Temperature T3: -40°C to +70°C	τ _{Rk,cr}	[N/mm ²]	7	10	9	9	8	8	5
Dry and wet concrete									
Installation safety factor	γinst	[-]				1,0			
Flooded hole									
Installation safety factor	γinst	[-]				1,2			
Factor for cracked concrete	C25/30 C30/37 C35/45 C40/50 C45/55 C50/60	[-]				1,02 1,04 1,06 1,07 1,08 1,09			

Concrete cone failure			
Factor for concrete cone failure for uncracked concrete	k _{ucr,N}	[1]	11
Factor for concrete cone failure for cracked concrete	k _{cr,N}	[-]	7,7
Edge distance	Ccr,N	[mm]	1,5h _{ef}

Splitting failure									
Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Edge distance	Ccr,sp	[mm]	2 • h _{ef}						
Spacing	Scr,sp	[mm]			2	2 • Ccr,sp			

MKE	
Performances Design according to EN 1992-4	Annex C 2
Characteristic resistance for tension loads - rebar	

Table C3: Design method EN 1992-4 Characteristic values of resistance to shear load of threaded rod

Steel failure without lever arm											
Size			M8	M10	M12	M16	M20	M24	M27	M30	
Steel grade 4.6	$V_{Rk,s}$	[kN]	7	12	17	31	49	71	92	112	
Partial safety factor	γMs	[-]				1,	,67				
Steel grade 5.8	$V_{Rk,s}$	[kN]	9	15	21	39	61	88	115	140	
Partial safety factor	γMs	[-]	1,25								
Steel grade 8.8	$V_{Rk,s}$	[kN]	15	23	34	63	98	141	184	224	
Partial safety factor	γMs	[-]				1,	,25				
Steel grade 10.9	$V_{Rk,s}$	[kN]	18	29	42	79	123	177	230	281	
Partial safety factor	γMs	[-]	1,5								
Stainless steel grade A2-70, A4-70	$V_{Rk,s}$	[kN]	13	20	30	55	86	124	161	196	
Partial safety factor	γMs	[-]				1,	,56				
Stainless steel grade A4-80	$V_{Rk,s}$	[kN]	15	23	34	63	98	141	184	224	
Partial safety factor	γMs	[-]				1,	,33				
Stainless steel grade 1.4529	$V_{Rk,s}$	[kN]	13	20	30	55	86	124	161	196	
Partial safety factor	γMs	[-]				1,	,25				
Stainless steel grade 1.4565	$V_{Rk,s}$	[kN]	13	20	30	55	86	124	161	196	
Partial safety factor	γMs	[-]				1,	,56				
Characteristic resistance of group of faste	ners		· · · · · ·								
Ductility factor $k_7 = 1.0$ for steel with rupt	ure elongat	ion A ₅ >	- 8%								

Steel failure with lever arm										
Size			M8	M10	M12	M16	M20	M24	M27	M30
Steel grade 4.6	$M^{o}_{Rk,s}$	[N.m]	15	30	52	133	260	449	666	900
Partial safety factor	γMs	[-]				1	,67			
Steel grade 5.8	$M^{o}_{Rk,s}$	[N.m]	19	37	66	166	325	561	832	1125
Partial safety factor	γMs	[-]				1	,25			
Steel grade 8.8	$M^{o}_{Rk,s}$	[N.m]	30	60	105	266	519	898	1332	1799
Partial safety factor	γMs	[-]				1	,25			
Steel grade 10.9	$M^{o}_{Rk,s}$	[N.m]	37	75	131	333	649	1123	1664	2249
Partial safety factor	γMs	[-]				1	,50			
Stainless steel grade A2-70, A4-70	$M^{o}_{Rk,s}$	[N.m]	26	52	92	233	454	786	1165	1574
Partial safety factor	γMs	[-]				1	,56			
Stainless steel grade A4-80	$M^{o}_{Rk,s}$	[N.m]	30	60	105	266	519	898	1332	1799
Partial safety factor	γMs	[-]				1	,33			
Stainless steel grade 1.4529	$M^{o}_{Rk,s}$	[N.m]	26	52	92	233	454	786	1165	1574
Partial safety factor	γMs	[-]	1,25							
Stainless steel grade 1.4565	$M^{o}_{Rk,s}$	[N.m]	26	52	92	233	454	786	1165	1574
Partial safety factor	γMs	[-]	1,56							
Concrete pryout failure										
Factor for resistance to pry-out failure k ₈ [-] 2									•	

Concrete edge failure										
Size			M8	M10	M12	M16	M20	M24	M27	M30
Outside diameter of fastener d	nom	[mm]	8	10	12	16	20	24	27	30
Effective length of fastener	ℓ f	[mm]			r	nin (h _{ef}	, 8 d _{nom})		

MKE	
Performances Design according to EN 1992-4 Characteristic resistance for shear loads - threaded rod	Annex C 3

Table C4: Design method EN 1992-4 Characteristic values of resistance to shear load of rebar

Steel failure without lever arm											
Size		Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32			
Rebar BSt 500 S	V _{Rk,s} [kN	14	22	31	55	86	135	221			
Partial safety factor	fety factor γ _{Ms} [-] 1,5										
Characteristic resistance of group of fasteners											
Ductility factor $k_7 = 1.0$ for steel with rupture elongation $A_5 > 8\%$											

Steel failure with lever arm									
Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Rebar BSt 500 S	Mo _{Rk,s} [N.m]	33	65	112	265	518	1013	2122
Partial safety factor	γMs	[-]				1,5			
Concrete pryout failure									
Factor for resistance to pry-out failure	k 8	[-]				2			

Concrete edge failure								
Size		Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Outside diameter of fastener d _{nom}	[mm]	8	10	12	16	20	25	32
Effective length of fastener \$\ell_f\$	[mm]			min	(h _{ef} , 8 d	I _{nom})		

MKE	
Performances Design according to EN 1992-4 Characteristic resistance for shear loads - rebar	Annex C 4

Table C5: Displacement of threaded rod under tension and shear load

Size		M8	M10	M12	M16	M20	M24	M27	M30
Tensi	Tension load								
Uncra	cked cond	rete							
δνο	[mm/kN]	0,03	0,02	0,02	0,02	0,01	0,01	0,01	0,01
δ _{N∞}	[mm/kN]	0,05	0,04	0,03	0,03	0,02	0,02	0,01	0,01
Crack	ed concre	te	-	<u>-</u>	<u>-</u>	<u>-</u>		<u>-</u>	<u>-</u>
δνο	[mm/kN]	0,05	0,04	0,03	0,03	0,02	0,02	0,02	0,02
δ _{N∞}	[mm/kN]	0,35	0,21	0,14	0,12	0,08	0,07	0,07	0,07
Shear	load		_	-	-	-		-	_
δ∨0	[mm/kN]	0,71	0,45	0,31	0,17	0,11	0,07	0,06	0,05
δ∨∞	[mm/kN]	1,06	0,67	0,46	0,25	0,16	0,11	0,08	0,07

Table C6: Displacement of rebar under tension and shear load

Size		Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Tensi	on load							
Uncra	cked cond	rete						
δνο	[mm/kN]	0,04	0,03	0,02	0,01	0,01	0,01	0,01
δ _{N∞}	[mm/kN]	0,08	0,05	0,04	0,02	0,02	0,01	0,01
Crack	ed concre	te	3	3	3	_	_	-
δ_{N0}	[mm/kN]	0,05	0,04	0,03	0,03	0,02	0,02	0,02
δ _{N∞}	[mm/kN]	0,35	0,21	0,17	0,11	0,08	0,07	0,06
Shear	load							
δνο	[mm/kN]	0,38	0,24	0,17	0,10	0,06	0,04	0,02
δ∨∞	[mm/kN]	0,56	0,36	0,25	0,14	0,09	0,06	0,04

MKE	
Performances Displacement for threaded rod and rebar	Annex C 5

Table C7: Seismic performance category C1 of threaded rod

Size			M8	M10	M12	M16	M20	M24	M27	M30
Tension load										
Steel failure										
Characteristic resistance grade 4.6	N _{Rk,s,eq,C1}	[kN]	15	23	34	63	98	141	184	224
Partial safety factor	γMs	[-]					00			,
Characteristic resistance grade 5.8	N _{Rk,s,eq,C1}	[kN]	18	29	42	79	123	177	230	281
Partial safety factor	γMs	[-]					50			
Characteristic resistance grade 8.8	N _{Rk,s,eq,C1}	[kN]	29	46	67	126	196	282	367	449
Partial safety factor	γMs	[-]					50			
Characteristic resistance grade 10.9	N _{Rk,s,eq,C1}	[kN]	37	58	84	157	245	353	459	561
Partial safety factor	γMs	[-]		1		1,	33			
Characteristic resistance A2-70, A4-70	N _{Rk,s,eq,C1}	[kN]	26	41	59	110	172	247	321	393
Partial safety factor	γMs	[-]				1,	87			•
Characteristic resistance A4-80	N _{Rk,s,eq,C1}	[kN]	29	46	67	126	196	282	367	449
Partial safety factor	γMs	[-]				1,	60			
Characteristic resistance 1.4529	N _{Rk,s,eq,C1}	[kN]	26	41	59	110	172	247	321	393
Partial safety factor	γMs	[-]				1,	50			
Characteristic resistance 1.4565	$N_{Rk,s,eq,C1}$	[kN]	26	41	59	110	172	247	321	393
Partial safety factor	γMs	[-]				1,	87			
Characteristic resistance to pull-out										
Temperature T3: -40°C to +70°C	τRk,p,eq,C1	[N/mm ²]	8,0	8,0	7,5	7,5	7,0	7,0	5,0	4,5
Installation safety factor	γinst	[-]				1	,0			
Shear load										
Steel failure without lever arm										
Characteristic resistance grade 4.6	V _{Rk,s,eq,C1}	[kN]	5	9	13	20	32	28	37	45
Partial safety factor	∀ Rk,s,eq,C1 γMs	[-]					67		01	.0
Characteristic resistance grade 5.8	V _{Rk,s,eq,C1}	[kN]	7	11	16	26	40	35	46	56
Partial safety factor	γMs	[-]					25	- 00		- 00
Characteristic resistance grade 8.8	V _{Rk,s,eq,C1}	[kN]	11	17	25	41	64	56	73	90
Partial safety factor	γΜs	[-]					25			
Characteristic resistance grade 10.9	V _{Rk,s,eq,C1}	[kN]	14	22	32	51	80	71	92	112
Partial safety factor	γMs	[-]		•		1,	50			
Characteristic resistance A2-70, A4-70	V _{Rk,s,eq,C1}	[kN]	10	15	22	36	56	49	64	79
Partial safety factor	γMs	[-]		•		1,	56		1	
Characteristic resistance A4-80	V _{Rk,s,eq,C1}	[kN]	11	17	25	41	64	56	73	90
Partial safety factor	γMs	[-]				1,	33			
Characteristic resistance 1.4529	V _{Rk,s,eq,C1}	[kN]	10	15	22	36	56	49	64	79
Partial safety factor	γMs	[-]				1,:	25			
Characteristic resistance 1.4565	V _{Rk,s,eq,C1}	[kN]	10	15	22	36	56	49	64	79
Partial safety factor	γMs	[-]					56			
Characteristic shear load resistance V _{Rk,s,}	eq in the Tabl	e C7 shall	be mult	tiplied b	y follo	wing re	ductior	factor	for ho	t-dip
Characteristic shear load resistance VRk,s,										
ga	alvanized co	mmercial s								
		mmercial s [-]	tandar 0,47	d rods 0,47	0,47	0,54	0,54	0,88	0,88	0,88

The anchor shall be used with minimum rupture elongation after fracture A_5 equal to 19%.

MKE	
Performances Seismic performance category C1 of threaded rod	Annex C 6

Size			Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Tension load								
Steel failure								
Rebar BSt 500 S	$N_{Rk,s,eq,C1}$	[kN]	43	62	111	173	270	442
Partial safety factor	γMs	[-]			1	,4		
Characteristic resistance to pull-out								
Temperature T3: -40°C to +70°C	τRk,p,eq,C1	[N/mm ²]	8,9	9,0	9,0	8,0	7,5	4,8
Dry and wet concrete								
Installation safety factor	γinst	[-]	1,0					
Flooded hole								
Installation safety factor	γinst	[-]			1	,2		

Shear load								
Steel failure without lever arm								
Rebar BSt 500 S	$V_{Rk,s,eq,C1}$	[kN]	16	23	41	69	67	111
Partial safety factor	γMs	[-]			1	,5		
Factor for annular gap	$lpha_{ extsf{gap}}$	[-]			0	,5		

MKE	
Performances Seismic performance category C1 of rebar	Annex C 7

Table C9: Seismic performance category C2 of threaded rod

Size			M12	M16	M20
Tension load				•	•
Steel failure					
Characteristic resistance grade 4.6	N _{Rk,s,eq,C2}	[kN]	34	63	98
Partial safety factor	γMs	[-]		2,00	
Characteristic resistance grade 5.8	N _{Rk,s,eq,C2}	[kN]	42	79	123
Partial safety factor	γMs	[-]		1,50	
Characteristic resistance grade 8.8	N _{Rk,s,eq,C2}	[kN]	67	126	196
Partial safety factor	γMs	[-]		1,50	l
Characteristic resistance grade 10.9	N _{Rk,s,eq,C2}	[kN]	84	157	245
Partial safety factor	γMs	[-]		1,33	l .
Characteristic resistance A2-70, A4-70	N _{Rk,s,eq,C2}	[kN]	59	110	172
Partial safety factor	γMs	[-]		1,87	l
Characteristic resistance A4-80	N _{Rk,s,eq,C2}	[kN]	67	126	196
Partial safety factor	γMs	[-]		1,60	l .
Characteristic resistance 1.4529	N _{Rk,s,eq,C2}	[kN]	59	110	172
Partial safety factor	γMs	[-]		1,50	I
Characteristic resistance 1.4565	N _{Rk,s,eq,C2}	[kN]	59	110	172
Partial safety factor	γMs	[-]		1,87	l .
Characteristic resistance to pull-out				· · · · · · · · · · · · · · · · · · ·	
Temperature T3: -40°C to +70°C	τRk,p,eq,C2	[N/mm ²]	3,2	3,7	4,2
Installation safety factor	γinst	[-]	- ,	1,0	,
Shear load	·				
Steel failure without lever arm					
	V	[LA]]	12	10	20
Characteristic resistance grade 4.6	V _{Rk,s,eq,C2}	[kN]	13	18	28
Partial safety factor	γMs	[-]	40	1,67	0.5
Characteristic resistance grade 5.8	$V_{Rk,s,eq,C2}$	[kN]	16	22	35
Partial safety factor	γMs	[-]		1,25	
Characteristic resistance grade 8.8	V _{Rk,s,eq,C2}	[kN]	25	36	56
Partial safety factor	γMs	[-]		1,25	
Characteristic resistance grade 10.9	V _{Rk,s,eq,C2}	[kN]	32	45	70
Partial safety factor	γMs	[-]		1,50	
Characteristic resistance A2-70, A4-70	V _{Rk,s,eq,C2}	[kN]	22	31	49
Partial safety factor	γMs	[-]		1,56	
Characteristic resistance A4-80	V _{Rk,s,eq,C2}	[kN]	25	36	56
Partial safety factor	γMs	[-]		1,33	1
Characteristic resistance 1.4529	$V_{Rk,s,eq,C2}$	[kN]	22	31	49
Partial safety factor	γMs	[-]		1,25	
Characteristic resistance 1.4565	$V_{Rk,s,eq,C2}$	[kN]	22	31	49
Partial safety factor	γMs	[-]		1,56	

Characteristic shear load resistance V_{Rk,s,eq} in the Table C9 shall be multiplied by following reduction factor for **hot-dip galvanized** commercial standard rods

Reduction factor for hot-dip galvanized rods $\alpha_{v,h-dg,c2}$ [-] 0,46 0,61 0,61

Factor for annular gap α_{gap} [-] 0,5

Table C10: Displacement under tensile and shear load - seismic category C2 of threaded rod

Size		M12	M16	M20
$\delta_{\text{N,eq(DLS)}}$	[mm]	0,20	0,40	0,77
$\delta_{\text{N,eq(ULS)}}$	[mm]	0,76	0,74	1,68
δ V,eq(DLS)	[mm]	5,29	4,12	4,94
$\delta_{V,eq(ULS)}$	[mm]	10,20	9,05	10,99

The anchor shall be used with minimum rupture elongation after fracture A5 equal to 19%.

MKE	
Performances Seismic performance category C2 of threaded rod	Annex C 8