

Czech Republic eota@tzus.cz

European Technical Assessment

ETA 20/0873 of 19/11/2020

Technical Assessment Body issuing the ETA: Technical and Test Institute for Construction Prague

Trade name of the construction product

MKW

Product family to which the construction product belongs

Product area code: 33

Bonded injection type anchor for use in

cracked and uncracked concrete

Manufacturer Marcopol Sp. z o.o. Producent Śrub

ul. Oliwska 100, 80-209 Chwaszczyno,

Poland

Manufacturing plant Plant 1

This European Technical Assessment

contains

16 pages including 13 Annexes which form

an integral part of this assessment.

This European Technical Assessment is issued in accordance with regulation (EU) No 305/2011, on the basis of

EAD 330499-01-0601

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full (excepted the confidential Annex(es) referred to above). However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body - Technical and Test Institute for Construction Prague. Any partial reproduction has to be identified as such.

1. Technical description of the product

The MKW with steel elements is bonded anchor (injection type).

Steel elements can be galvanized or stainless steel threaded rods or rebars.

Steel element is placed into a drilled hole filled with injection mortar. The steel element is anchored via the bond between metal part, injection mortar and concrete. The anchor is intended to be used with various embedment depth up to 20 diameters.

The illustration and the description of the product are given in Annex A.

2. Specification of the intended use in accordance with the applicable EAD

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The provisions made in this European Technical Assessment are based on an assumed working life of the anchor of 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the products in relation to the expected economically reasonable working life of the works.

3. Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Static and quasi-static loading	
Resistance to steel failure (tension)	See Annex C 1, C 2
Resistance to combined pull-out and concrete failure	See Annex C 1, C 2
Resistance to concrete cone failure	See Annex C 1, C 2
Edge distance to prevent splitting under load	See Annex C 1, C 2
Robustness	See Annex C 1, C 2
Maximum setting torque moment	See Annex B 4
Minimum edge distance and spacing	See Annex B 4
Resistance to steel failure (shear)	See Annex C 3, C 4
Resistance to pry-out failure	See Annex C 3, C 4
Resistance to concrete edge failure	See Annex C 3, C 4
Displacements under short term and long term loading	See Annex C 5

3.2 Hygiene, health and environment (BWR 3)

No performance determined.

3.3 General aspects relating to fitness for use

Durability and serviceability are only ensured if the specifications of intended use according to Annex B 1 are kept.

4. Assessment and verification of constancy of performance (AVCP) system applied with reference to its legal base

According to the Decision 96/582/EC of the European Commission¹ the system of assessment verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) given in the following table apply.

Product	Intended use	Level or class	System
Metal anchors for	For fixing and/or supporting to concrete,		
use in concrete	structural elements (which contributes to	-	1
	the stability of the works) or heavy units		

Official Journal of the European Communities L 254 of 08.10.1996

1

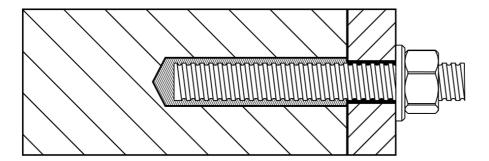
5. Technical details necessary for the implementation of the AVCP system, as provided in the applicable EAD

The factory production control shall be in accordance with the control plan which is a part of the technical documentation of this European Technical Assessment. The control plan is laid down in the context of the factory production control system operated by the manufacturer and deposited at Technický a zkušební ústav stavební Praha, s.p.² The results of factory production control shall be recorded and evaluated in accordance with the provisions of the control plan.

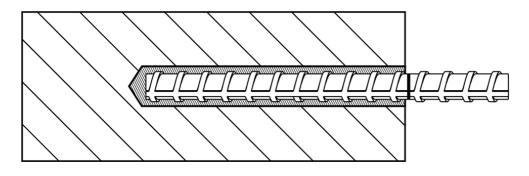
Issued in Prague on 19.11.2020

Ing. Mária Schaan

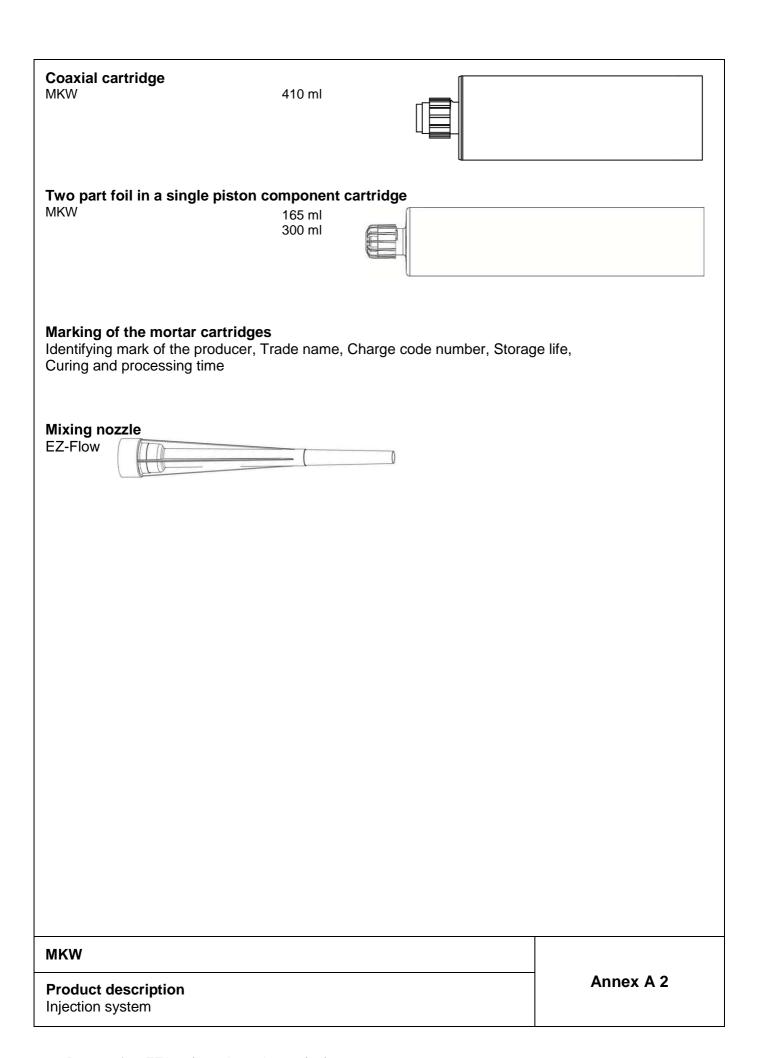
Head of the Technical Assessment Body

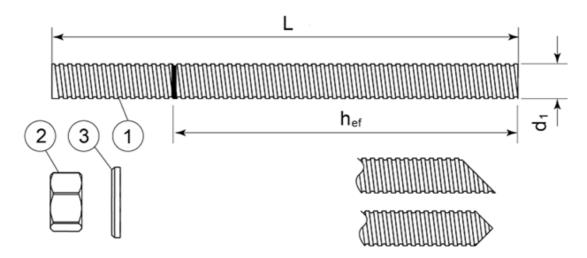


Page 3 of 16 ETA 20/0873 issued on 19/11/2020


2

The control plan is a confidential part of the documentation of the European Technical Assessment, but not published together with the ETA and only handed over to the approved body involved in the procedure of AVCP.


Threaded rod KGFIX


Reinforcing bar

MKW	
Product description Installed conditions	Annex A 1

Threaded rod KGFIX M8, M10, M12, M16, M20, M24

Standard commercial threaded rod with marked embedment depth

Part	Designation	Material						
	Designation							
	Steel, zinc plated ≥ 5 µm acc. to EN ISO 4042 or							
	eel, Hot-dip galvanized ≥ 40 µm acc. to EN ISO 1461 and EN ISO 10684 or eel, zinc diffusion coating ≥ 15 µm acc. to EN 13811							
Steel,								
1	Anchor rod	Steel, EN 10087 or EN 10263 Property class 4.6, 4.8, 5.6, 5.8, 8.8, 10.9* EN ISO 898-1						
2	Hexagon nut EN ISO 4032	According to threaded rod, EN 20898-2						
3	Washer EN ISO 887, EN ISO 7089, EN ISO 7093 or EN ISO 7094	According to threaded rod						
Stainl	ess steel							
1	Anchor rod	Material: A2-70, A4-70, A4-80, EN ISO 3506						
2	Hexagon nut EN ISO 4032	According to threaded rod						
3	Washer EN ISO 887, EN ISO 7089, EN ISO 7093 or EN ISO 7094	According to threaded rod						
High (corrosion resistant steel							
1	Anchor rod	Material: 1.4529, 1.4565, EN 10088-1						
2	Hexagon nut EN ISO 4032	According to threaded rod						
3	Washer EN ISO 887, EN ISO 7089, EN ISO 7093 or EN ISO 7094	According to threaded rod						

^{*}Galvanized rod of high strength are sensitive to hydrogen induced brittle failure

MKW	
Product description Threaded rod and materials	Annex A 3

Rebar Ø8, Ø10, Ø12, Ø16, Ø20, Ø25

Standard commercial reinforcing bar with marked embedment depth

Product form	Bars and de	-coiled rods		
Class	Class			
Characteristic yield strength fyk or fo	_{0,2k} (MPa)	400 t	o 600	
Minimum value of $k = (f_t/f_y)_k$		≥ 1,08	≥ 1,15 < 1,35	
Characteristic strain at maximum for	≥ 5,0	≥ 7,5		
Bendability		Bend/Rebend test		
Maximum deviation from nominal	Nominal bar size (mm)			
mass (individual bar) (%)	±6	6,0		
	±4	l,5		
Bond: Minimum relative rib area,	Nominal bar size (mm)			
$f_{R,min}$	8 to 12	0,0)40	
	> 12	0,0)56	

MKW	
Product description Rebars and materials	Annex A 4

Specifications of intended use

Anchorages subject to:

· Static and quasi-static load

Base materials

- · Cracked and uncracked concrete
- Reinforced or unreinforced normal weight concrete of strength class C20/25 at minimum and C50/60 at maximum according EN 206

Temperature range:

• -40°C to +80°C (max. short. term temperature +80°C and max. long term temperature +50°C)

Use conditions (Environmental conditions)

- (X1) Structures subject to dry internal conditions (zinc coated steel, stainless steel, high corrosion resistance steel).
- (X2) Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel A4, high corrosion resistant steel).
- (X3) Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist (high corrosion resistant steel).

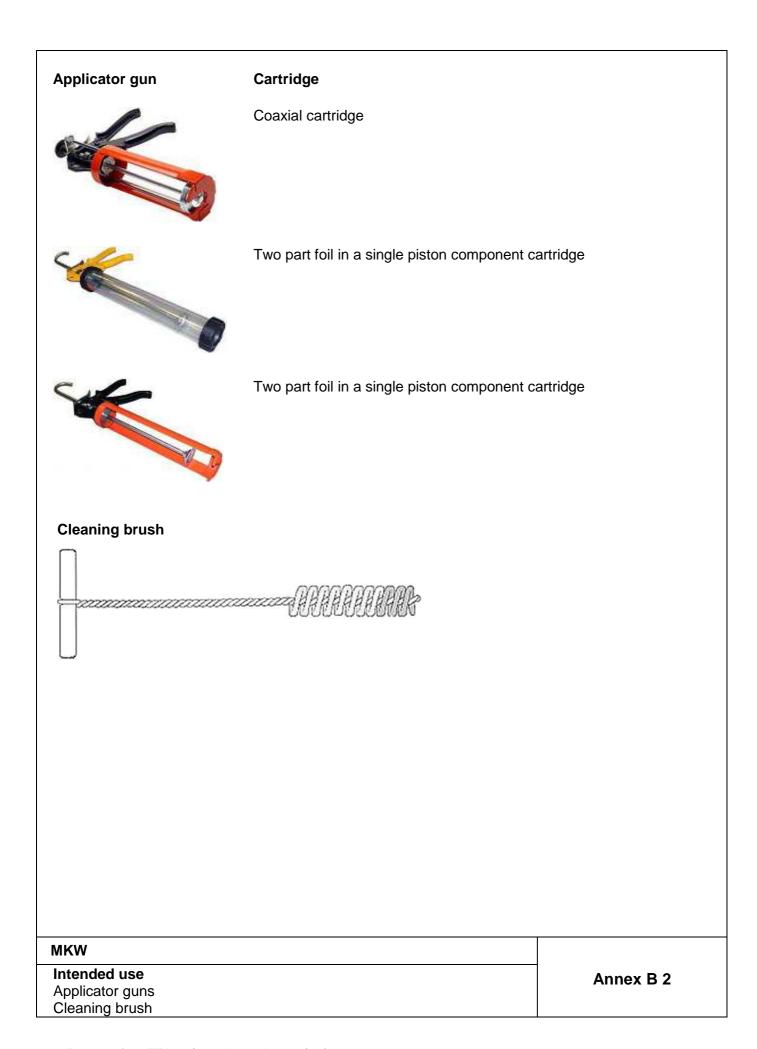
Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Concrete conditions:

- 11 installation in dry or wet (water saturated) concrete and use in service in dry or wet concrete.
- 12 installation in water-filled (not sea water) and use in service in dry or wet concrete

Design:

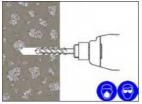
- The anchorages are designed in accordance with the EN 1992-4 under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings.


Installation:

- · Hole drilling by hammer drill mode.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

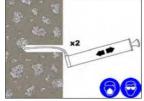
Installation direction:

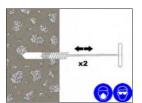
• D3 – downward and horizontal and upwards (e.g. overhead) installation

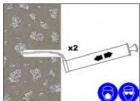

MKW	
Intended use Specifications	Annex B 1

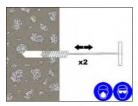
Installation instructions

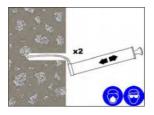
Before commencing installation ensure the operative is equipped with appropriate personal protection equipment, SDS Hammer Drill, Blow pump, Hole Cleaning Brush, good quality Dispensing Tool, Chemical cartridge with mixing nozzle and extension tube, if needed.

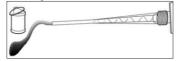

 Drill the hole to the correct diameter and depth. This can be done with either a rotary percussion or rotary hammer drilling machine depending upon the substrate.

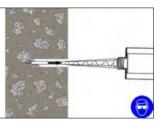



 If necessary, cut the extension tube to the depth of the hole and push onto the end of the mixer nozzle, and (for threaded bar 16mm dia. or more) fit the correct resin stopper to the other end. Attach extension tubing and resin stopper.


2. Thoroughly clean the hole in the following sequence using the brush with the required extensions and a blow pump.

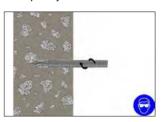

Blow Clean x2. Brush Clean x2. Blow Clean x2. Brush Clean x2. Blow Clean x2.



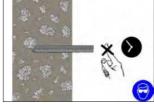


If the hole collects water after the initial cleaning this water must be removed before injecting the resin.

- Select the appropriate static mixer nozzle for the installation, open the cartridge/foil and screw onto the mouth of the cartridge. Insert the cartridge into the correct applicator gun.
- Extrude the first part of the cartridge to waste until an even colour has been achieved without streaking in the resin.

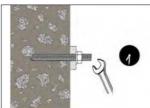


6. Insert the mixer nozzle (resin stopper / extension tube if applicable) to the bottom of the hole. Begin to extrude the resin and slowly withdraw the mixer nozzle from the hole ensuring that there are no air voids as the mixer



nozzle is withdrawn. Fill the hole to approximately % to % full and remove the mixer nozzle completely.

 Insert the clean threaded bar, free from oil or other release agents, to the bottom of the hole using a back and forth twisting motion ensuring all the threads are thoroughly coated. Adjust to the correct position within the stated working time.



- Any excess resin should be expelled from the hole evenly around the steel element showing that the hole is full.
 This excess resin should be removed from around the mouth of the hole before it sets.
- Leave the anchor to cure.
 Do not disturb the anchor until the appropriate loading/curing time has elapsed depending on the substrate conditions and ambient temperature.

10 Attach the fixture and tighten the nut to the recommended torque.

Do not overtighten.

MKW

Intended use Installation procedure

Annex B 3

Table B1: Installation parameters of threaded rod

Size			M8	M10	M12	M16	M20	M24
Nominal drill hole diameter	$ \emptyset d_0 $	[mm]	10	12	14	18	22	26
Diameter of cleaning brush	d _b	[mm]	14	14	20	20	29	29
Torque moment	max T _{fix}	[Nm]	10	20	40	80	120	160
Depth of drill hole for hef,min	h _{ef}	[mm]	60	60	70	80	90	96
Depth of drill hole for hef,max	h _{ef}	[mm]	160	200	240	320	400	480
Depth of drill hole	h_0	[mm]	h _{ef} +5	h _{ef} +5				
Minimum edge distance	C _{min}	[mm]	40	40	50	70	80	100
Minimum spacing	Smin	[mm]	40	40	50	70	80	100
Minimum thickness of member	h_{min}	[mm]	$h_{ef} + 30$	0 mm ≥ 1	00 mm		h _{ef} + 2d ₀	

Table B2: Installation parameters of rebar

Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25
Nominal drill hole diameter	$ \emptyset d_0 $	[mm]	12	14	16	20 22	25	30 32
Diameter of cleaning brush	d_b	[mm]	14	14	19	22	29	40
Depth of drill hole for hef,min	h _{ef}	[mm]	60	60	70	80	90	100
Depth of drill hole for hef,max	h _{ef}	[mm]	160	200	240	320	400	480
Depth of drill hole	h_0	[mm]	h _{ef} +5	h _{ef} +5	h _{ef} +5	h _{ef} +5	h _{ef} +5	h _{ef} +5
Minimum edge distance	C _{min}	[mm]	40	40	50	70	80	100
Minimum spacing	Smin	[mm]	40	40	50	70	80	100
Minimum thickness of member	h_{min}	[mm]	h _{ef} + 30	0 mm ≥ 1	00 mm		h _{ef} + 2d ₀)

Table B3: Minimum curing time

Resin cartridge temperature [°C]	T Work [mins]	Base material Temperature [°C]	T Load [mins]
min +5	18	min +5	145
+5 to +10	10	+5 to +10	143
+10 to +20	6	+10 to +20	85
+20 to +25	5	+20 to +25	50
+25 to +30	1	+25 to +30	40
+30	4	+30	35

T Work is typical gel time at highest base material temperature in the range.

Annex B 4

T Load is minimum set time required until load can be applied at the lowest temperature in the range.

Table C1: Design method EN 1992-4 Characteristic values of resistance to tension load of threaded rod

Steel failure – Characteristic	resistance								
Size				M8	M10	M12	M16	M20	M24
Steel grade 4.6		$N_{Rk,s}$	[kN]	15	23	34	63	98	141
Partial safety factor		γMs	[-]			2,0	00		
Steel grade 4.8		N _{Rk,s}	[kN]	15	23	34	63	98	141
Partial safety factor		γMs	[-]			1,			l.
Steel grade 5.6		N _{Rk,s}	[kN]	18	29	42	79	123	177
Partial safety factor		γMs	[-]			2,0			l.
Steel grade 5.8		N _{Rk,s}	[kN]	18	29	42	79	123	177
Partial safety factor		γMs	[-]			1,	50		
Steel grade 8.8		N _{Rk,s}	[kN]	29	46	67	126	196	282
Partial safety factor		γMs	[-]		1	1,			ı
Steel grade 10.9		N _{Rk,s}	[kN]	37	58	84	157	245	353
Partial safety factor		γMs	[-]			1,3			l.
Stainless steel grade A2-70, A4	I-70	N _{Rk,s}	[kN]	26	41	59	110	172	247
Partial safety factor		γMs	[-]			1,8			l.
Stainless steel grade A4-80		N _{Rk,s}	[kN]	29	46	67	126	196	282
Partial safety factor		γMs	[-]			1,0			l.
High corrosion resistant steel gr	rade 1.4529	N _{Rk,s}	[kN]	26	41	59	110	172	247
Partial safety factor		γMs	[-]			1,			
High corrosion resistant steel gr	rade 1.4565	N _{Rk,s}	[kN]	26	41	59	110	172	247
Partial safety factor		γMs	[-]		ı	1,8			ı
Combined pullout and concre	eto cono failu			20/25		·			
Size	te cone iana	ile iii C	Officiete C	M8	M10	M12	M16	M20	M24
Characteristic bond resistance	o in uncrack	rod cor	oroto	IVIO	IVIIO	IVIIZ	WITO	IVIZU	IVIZT
Temperature: -40°C to +80°C	e ili dilciack		[N/mm ²]	11	10	10	9	7,5	7
Dry, wet concrete, flooded ho	مام	τ _{Rk,ucr}	[14/111111]	11	10	10	9	7,5	,
Partial safety factor	10	γinst	[-]			1	,2		
i artial safety factor	C25/30	Tillst	[-]				04		
	C30/37						08		
	C35/45						12		
Factor for uncracked concrete	C40/50	Ψc	[-]				15		
	C45/55						17		
	C50/60					1,			
Characteristic bond resistand		Concr	ete			٠,			
Temperature: -40°C to +80°C		TRk,ucr	[N/mm ²]	5	5	4,5	4	4	4
Dry, wet concrete, flooded ho	le	1111,001	[]			.,0	•	•	
Partial safety factor		1	гп				2		
		Vinst	-			1.			
	C25/30	γinst	[-]			1, 1,0			
	C25/30 C30/37	γinst	[-]			1,0	04		
	C30/37	·				1,0 1,0	04 08		
Factor for cracked concrete	C30/37 C35/45	γinst Ψc	[-]			1,0 1,0 1,0	04 08 12		
Factor for cracked concrete	C30/37	·				1,0 1,0 1,1 1,1	04 08 12 15		
Factor for cracked concrete	C30/37 C35/45 C40/50	·				1,0 1,0 1,0	04 08 12 15		
Factor for cracked concrete Concrete cone failure	C30/37 C35/45 C40/50 C45/55	·				1,0 1,0 1,0 1,0 1,0	04 08 12 15		
Concrete cone failure	C30/37 C35/45 C40/50 C45/55 C50/60	Ψα	[-]			1,0 1,0 1,0 1,0 1,0	04 08 12 15 17		
Concrete cone failure Factor for concrete cone failure fo	C30/37 C35/45 C40/50 C45/55 C50/60	ψc	[-]			1,, 1,, 1,, 1,, 1,,	04 08 12 15 17 19		
Concrete cone failure Factor for concrete cone failure for Factor for concrete cone failure for	C30/37 C35/45 C40/50 C45/55 C50/60	ψc	[-]			1,, 1,, 1,, 1,, 1,,	04 08 12 15 17 19		
Concrete cone failure Factor for concrete cone failure for Factor for concrete cone failure for Edge distance	C30/37 C35/45 C40/50 C45/55 C50/60	ψ _c	[-]			1,, 1,, 1,, 1,, 1,,	04 08 12 15 17 19		
Concrete cone failure Factor for concrete cone failure for Factor for concrete cone failure for Edge distance Splitting failure	C30/37 C35/45 C40/50 C45/55 C50/60	ψ _c	[-]	MR	M10	1,, 1,, 1,, 1,, 1,, 1,, 7,	04 08 12 15 17 19 1 1	M20	M24
Concrete cone failure Factor for concrete cone failure for Factor for concrete cone failure for Edge distance Splitting failure Size	C30/37 C35/45 C40/50 C45/55 C50/60	ψc concrete corete Ccr,N	[-] kucr,N kcr,N [mm]	M8	M10	1, 1, 1, 1, 1, 1, 1, 1, 1,5	04 08 12 15 17 19 1 1,7 5hef	M20	M24
Concrete cone failure Factor for concrete cone failure for Factor for concrete cone failure for Edge distance Splitting failure	C30/37 C35/45 C40/50 C45/55 C50/60	ψ _c	[-]	M8	M10	1,, 1,, 1,, 1,, 1,, 1,, 7,	04 08 12 15 17 19 1,7 5hef M16	M20	M24

MKW	
Performances	Annex C 1
Design according to EN 1992-4	
Characteristic resistance for tension loads - threaded rod	

Table C2: Design method EN 1992-4 Characteristic values of resistance to tension load of rebar

Steel failure - Characteristic resistance								
Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25
Rebar BSt 500 S	$N_{Rk,s}$	[kN]	28	43	62	111	173	270
Partial safety factor	γMs	[-]			1	,4		

Pullout failure in concrete C20	/25									
Size				Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	
Characteristic bond resistance	in uncrac	ked co	ncrete		_	-				
Temperature: -40°C to +80°C		τ _{Rk,ucr}	[N/mm ²]	8,5	8	8	7	7	5,5	
Dry, wet concrete, flooded hole	е									
Installation safety factor		γinst	[-]			1	,2			
Factor for uncracked concrete Characteristic bond resistance	C25/30 C30/37 C35/45 C40/50 C45/55 C50/60	ψο	[-]	1,04 1,08 1,12 1,15 1,17 1,19						
Temperature: -40°C to +80°C	, iii oraono	TRk,ucr		4	3,5	3,5	3,5	3,5	2,5	
Dry, wet concrete, flooded hole	e		[]	-	-,-		-,-	-,-	_,-	
Installation safety factor		γinst	[-]			1	,2			
Factor for cracked concrete	C25/30 C30/37 C35/45 C40/50 C45/55 C50/60	Ψο	[-]	1,2 1,04 1,08 1,12 1,15 1,17 1,19						

Concrete cone failure			
Factor for concrete cone failure for uncracked concrete	k ucr,N	r 1	11
Factor for concrete cone failure for cracked concrete	k cr,N	[-]	7,7
Edge distance	C _{cr,N}	[mm]	1,5h _{ef}

		Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	
C _{cr,sp}	[mm]	2 • h _{ef}						
S _{cr,sp}	[mm]	2 • c _{cr,sp}						
		,.,	C _{cr,sp} [mm]	C _{cr,sp} [mm]	c _{cr,sp} [mm] 2 •	c _{cr,sp} [mm] 2 • h _{ef}	c _{cr,sp} [mm] 2 • h _{ef}	

	_
MKW	
Performances	Annex C 2
Design according to EN 1992-4	Aumox o 2
Characteristic resistance for tension loads - rebar	

Table C3: Design method EN 1992-4 Characteristic values of resistance to shear load of threaded rod

Size			M8	M10	M12	M16	M20	M24
Steel grade 4.6	$V_{Rk,s}$	[kN]	7	12	17	31	49	71
Partial safety factor	γMs	[-]			1,	67		•
Steel grade 4.8	$V_{Rk,s}$	[kN]	7	12	17	31	49	71
Partial safety factor	γMs	[-]			1,	25		
Steel grade 5.6	$V_{Rk,s}$	[kN]	9	15	21	39	61	88
Partial safety factor	γMs	[-]			1,	67		
Steel grade 5.8	$V_{Rk,s}$	[kN]	9	15	21	39	61	88
Partial safety factor	γMs	[-]			1,	25		
Steel grade 8.8	$V_{Rk,s}$	[kN]	15	23	34	63	98	141
Partial safety factor	γMs	[-]	1,25					
Steel grade 10.9	$V_{Rk,s}$	[kN]	18	29	42	79	123	177
Partial safety factor	γMs	[-]			1	,5		
Stainless steel grade A2-70, A4-70	$V_{Rk,s}$	[kN]	13	20	30	55	86	124
Partial safety factor	γMs	[-]			1,	56		
Stainless steel grade A4-80	$V_{Rk,s}$	[kN]	15	23	34	63	98	141
Partial safety factor	γMs	[-]			1,	33		
High corrosion resistant steel grade 1.4529	$V_{Rk,s}$	[kN]	13	20	30	55	86	124
Partial safety factor	γMs	[-]	1,25					
High corrosion resistant steel grade 1.4565	$V_{Rk,s}$	[kN]	13	20	30	55	86	124
Partial safety factor	γMs	[-]			1,	56		
Characteristic resistance of group of fasteners								
Ductility factor $k_7 = 1,0$ for steel with rupture e	longation	$A_5 > 8\%$	6					

Steel failure with lever arm							
Size		M8	M10	M12	M16	M20	M24
Steel grade 4.6	M ^o _{Rk,s} [N.m]	15	30	52	133	260	449
Partial safety factor	γMs [-]		1,67				
Steel grade 4.8	M ^o _{Rk,s} [N.m]	15	30	52	133	260	449
Partial safety factor	γMs [-]			1,	25		
Steel grade 5.6	M ^o _{Rk,s} [N.m]	19	37	66	166	325	561
Partial safety factor	γMs [-]			1,	67		
Steel grade 5.8	M ^o _{Rk,s} [N.m]	19	37	66	166	325	561
Partial safety factor	γMs [-]			1,	25		
Steel grade 8.8	Mo _{Rk,s} [N.m]	30	60	105	266	519	898
Partial safety factor	γMs [-]			1,	25		
Steel grade 10.9	M ^o _{Rk,s} [N.m]	37	75	131	333	649	1123
Partial safety factor	γMs [-]			1,	50		
Stainless steel grade A2-70, A4-70	M ^o _{Rk,s} [N.m]	26	52	92	233	454	786
Partial safety factor	γMs [-]			1,	56		
Stainless steel grade A4-80	M ^o _{Rk,s} [N.m]	30	60	105	266	519	898
Partial safety factor	γMs [-]			1,	33		
High corrosion resistant steel grade 1.4529	M ^o _{Rk,s} [N.m]	26	52	92	233	454	786
Partial safety factor	γMs [-]	1,25					
High corrosion resistant steel grade 1.4565	$M^{o}_{Rk,s}$ [N.m]	26	52	92	233	454	786
Partial safety factor	γMs [-]			1,	56		
Concrete pryout failure							
Factor for resistance to pry-out failure	k ₈ [-]				2		

Concrete edge failure								
Size			M8	M10	M12	M16	M20	M24
Outside diameter of fastener	d_{nom}	[mm]	8	10	12	16	20	24
Effective length of fastener	l f	[mm]			min (hef	, 8 d _{nom})		

MKW	
Performances Design according to EN 1992-4 Characteristic resistance for shear loads - threaded rod	Annex C 3

Table C4: Design method EN 1992-4 Characteristic values of resistance to shear load of rebar

Steel failure without lever arm										
Size		Ø8	Ø10	Ø12	Ø16	Ø20	Ø25			
Rebar BSt 500 S	$V_{Rk,s}$	[kN]	14	22	31	55	86	135		
Partial safety factor	γMs	[-]			1	,5				
Characteristic resistance of group of fasteners										
Ductility factor										

Steel failure with lever arm							
Size		Ø8	Ø10	Ø12	Ø16	Ø20	Ø25
Rebar BSt 500 S	Mo _{Rk,s} [N.m]	33	65	112	265	518	1013
Partial safety factor	γMs [-]		1,5				
Concrete pryout failure							
Factor for resistance to pry-out failure	k ₈ [-]	2					

Concrete edge failure							
Size		Ø8	Ø10	Ø12	Ø16	Ø20	Ø25
Outside diameter of fastener dnom	[mm]	8	10	12	16	20	25
Effective length of fastener \$\ell_f\$	[mm]			min (hef	, 8 d _{nom})		

MKW	
Performances Design according to EN 1992-4 Characteristic resistance for shear loads - rebar	Annex C 4

Table C5: Displacement of threaded rod under tension and shear load

Size		M8	M10	M12	M16	M20	M24	
Tensi	Tension load							
Uncra	Uncracked concrete							
δηο	[mm/kN]	0,030	0,024	0,026	0,026	0,022	0,023	
δn∞	[mm/kN]	0,103	0,083	0,059	0,045	0,038	0,032	
Crack	Cracked concrete							
δηο	[mm/kN]	0,056	0,044	0,058	0,063	0,044	0,035	
δn∞	[mm/kN]	0,694	0,556	0,577	0,469	0,278	0,217	
Shear load								
δ_{V0}	[mm/kN]	0,021	0,016	0,013	0,010	0,008	0,007	
δ∨∞	[mm/kN]	0,031	0,024	0,020	0,015	0,012	0,010	

Table C6: Displacement of rebar under tension and shear load

Size		Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	
Tensi	Tension load							
Uncra	Uncracked concrete							
δΝο	[mm/kN]	0,037	0,033	0,036	0,031	0,025	0,023	
δν∞	[mm/kN]	0,126	0,113	0,081	0,053	0,043	0,031	
Cracked concrete								
δΝο	[mm/kN]	0,067	0,054	0,071	0,047	0,044	0,043	
δn∞	[mm/kN]	0,820	0,630	0,660	0,372	0,272	0,266	
Shear load								
δνο	[mm/kN]	0,020	0,016	0,013	0,010	0,008	0,006	
δν∞	[mm/kN]	0,030	0,025	0,019	0,015	0,012	0,008	

MKW	
Performances Displacement for threaded rod and rebar	Annex C 5